

Working with Water: Strategic Shallow-Water Placement Pilot Project using Dredged Sediment

JULIE BEAGLE

Environmental Planning Section Chief Engineering with Nature Practice Lead San Francisco District, USACE JESSIE LACY, PHD Research Oceanographer Pacific Coastal and Marine Science Center USGS

PILOT PROJECTS TAKE TEAMWORK!

USACE

Peter Mull - Project Manager John Dingler- Planning Mentor Arye Janoff - Planner Julie Beagle- Environmental Planner Eric Joliffe- Environmental Planner Ellie Covington- Environmental Planner Tiffany Cheng- Coastal Engineer Fanny Chan- Civil Engineer Kelly Boyd – Real Estate Stephanie Sahinoglu-Cultural Resources

Modeling

Michael MacWilliams, Aaron Bever (AnchorQEA)

Project Partners CA Coastal Conservancy Evyan Sloane (SCC) Brenda Goeden (BCDC)

SF Bay Regional Water Quality Control Board (CEQA Lead)

Xavier Fernandez Kevin Lunde Jazzy Graham-Davis Christina Toms

USGS / Monitoring

Jessie Lacy, Andrew Stevens Karen Thorne, Kevin Buffington Susan de la Cruz, Isa Woo, Tanya Graham Keith Merkel

MANY OTHERS

07-00

THE OTHER DESIGNATION

all's

Corte Madera WARMER results in terms of vegetation category: mudflat, low, mid, or high marsh, or upland transition. Karen Thorne, USGS

PROBLEMS

- Limited sediment supply regionally + sealevel rise
 - Marsh drowning and erosion
 - Habitat loss for endangered and threatened species
 - Increased flood risk for low-lying communities

Corte Madera WARMER results in terms of vegetation category: mudflat, low, mid, or high marsh, or upland transition. Karen Thorne, USGS

PROBLEMS

- Limited **sediment supply** regionally + **sealevel rise**
 - Marsh drowning and erosion
 - Habitat loss for endangered and threatened species
 - Increased **flood risk** for low-lying communities

OPPORTUNITY

- Reuse dredged material in innovative ways to support existing bayland ecosystems
- Leverage dredged material from navigation channels
 - Beneficial Use: Direct Placement
 - Novel EWN Methods (e.g., Strategic Placement)

SEDIMENT TRANSPORT BETWEEN SHALLOWS AND MARSH

MIMICKING/BOOSTING SEDIMENT TRANSPORT PROCESSES

WHERE CAN THIS TOOL BE USED?

Site selection criteria

- Eroding or drowning marsh, lack of natural sediment supply
- Sufficient wind-wave action to resuspend sediment placed
- Open to tidal exchange
- Wind-wave shore-normal approach
- Deep water close to shore
- Avoiding large eelgrass beds/nearshore reef projects
- Flood protection for EJ/disadvantaged communities

Pushed across the Bay by Tugboat

BERNICE LIND

Port of Redwood City

Deposited in 169 loads
between Dec 6 and Dec 31,
2023

MOVING DIRT IS HARD, and we are running out of time!

- Unknown timing of the dredging
- Windows for permits closed or had to be extended
- Government shut down loomed
- Required LOTS of communication, across USACE, dredgers, regulators, monitoring teams, media, and more.
- Sea levels are rising......

DEFINING SUCCESS

How will we gauge success of this effort? ✓ Implementation of **novel placement method**

- Material not going to disposal site; keeping dredged material in the system
- Delivery to mudflats, and eventually marshes, and restoration ponds
- ✓ Community and Tribal engagement
- Completion of a successful dredging contract with available equipment
- ✓ Attracting new members of the dredging industry to the region
- Placement minimizing impact to ecological function of shallows
- ✓ **Testing a tool** useful in maximizing BU for the future
- Development of monitoring methods for future efforts

KEY MONITORING QUESTIONS

What are the potential impacts on the benthos and ecological communities nearby?

- How long do the effects last?
- How far do the effects spread?
- What about eelgrass in the area?

KEY MONITORING QUESTIONS

What are the potential impacts on the benthos and ecological communities nearby?

- How long do the effects last?
- How far do the effects spread?
- What about eelgrass in the area?

Where does the sediment end up? How do physical processes (tides and waves influence its transport?

- Repeat bathymetric surveys
- What wave conditions move sediment?
- Use of a particle tracking study
- Understanding deposition in mudflats, marshes, breached ponds

Placement Dec 6-31, 2023

Dredgers reported time, location and volume of each placement

Sediment fate and transport

Oceanographic data

Monitoring waves, currents, salinity, suspended-sediment concentration in region of placement area

November 2023-July 2024

Instrument stations

current profiler, SSC

3 km

current profiler

Legend

Effects on Benthic Communities

Benthic community density, diversity and accessibility for predators

Before After Control Impact (BACI) design to evaluate effects:

- Distance from placement
- Time since placement

Intensive sampling effort

- immediately pre and post placement
- 6 months later

Prey Accessibility (based on invertebrate-prey size and depth within the sediment)

USGS WERC: De La Cruz, Woo, Graham

Potential impacts

SSC during placement

Increased SSC reduces light penetration, a concern for eelgrass and phytoplankton

- Spikes in SSC occurred after many placement events
- Spikes typically lasted 1-1.5 hours
- Observed at 'closest' station in direction of tidal currents
- During wave events, SSC at all stations reached 200-400 mg/L for >12 hours

Placement increased SSC for short periods, without exceeding levels that occur naturally

Repeat bathymetric mapping:

- Multiple mounds •
- Varying size

-0.2

-0.4

-0.6

Elevation (m) 1- 800-

-1.2

-1.4

-1.6

0

Height and • volume gradually decreasing

Sediment fate and transport

How long does it take for the dredged material to disperse?

Tracer study

- 1,000 kg of fluorescent, magnetic coated silt particles (tracer)
- Deployed January 11, 2024
- One location in the placement area

- What are the primary directions of transport from the placement area?
- Where does sediment from the placement area end up?
- How does that change over time?

 ≤ 0.86

Sediment fate and transport

Tracer sampling in the shallows

Sediment fate and transport

19 magnet stations, one day after tracer deployment

Marsh and restoration area

Monthly from Nov 2023 to Dec 2024:

- Magnets deployed in tidal creeks to capture tracer
- Transects of sediment pads across marsh (6) and restored areas (6) to measure deposition

USGS WERC: Thorne, Buffington

Sediment fate and transport

Conclusions: Monitoring Program

Potential impacts

Sediment fate and transport

- We've successfully implemented an interdisciplinary multi-component monitoring program
- One Team: Information sharing between science teams and dredgers enhances the effort
- Learning from the Pilot: prioritize monitoring components for future projects
- Learning from the Pilot: use results to test and improve models to support future projects
- Monitoring continues until end of 2024

We look forward to sharing future results!

What's next?

- More pilot projects!
- Scaling up: Toward Marsh Maintenance Plan!
 - Permitting- Programmatic permitting for shallow water placement to support existing marshes
- Beneficial use needs to be a priority across the board
 - Flexibility, interdisciplinary collaboration, and good communication!

THANK YOU

Contact:Julie.R.Beagle@usace.army.milJlacy@usgs.gov

