MAY 28 2024 Leveraging open science, synthesis, and collaboration to advance fisheries and food web knowledge in the estuary

Denise Colombano, PhD Delta Stewardship Council

State of the Estuary 2024



DELTA STEWARDSHIP COUNCIL

"Our capacity to efficiently provide timely information to meet modern societal challenges will depend on a global "greening" of ecology – that is, data should not only be generated and analyzed, but must also be available to be re-used and recycled."

- Hampton et al. 2013, "Big data and the future of ecology"





https://water.ca.gov/ab1755

#### What is synthesis?



The process of combining disparate sources of information/data to see the bigger picture and gain new insights

#### Synthesis at the Delta Science Program

- Perform analysis and synthesis of scientific information to report on status and trends of key issues
- Update the scientific state of knowledge; identify science needs and data gaps; guide adaptive management



#### Where can I find open data products?

R Shiny applications for the Sacramento San Joaquin Delta



Hosting a shiny app on our site

sted in hosting a shiny app on our account, please read over the policy, fill out the questionnaire, and submit it to shiny@deltacounci

Idal Delta, Estuary & Bays



Ξ

Overview Repositories 17 Projects 1 Packages 8 People



Delta Stewardship Council

#### A 3 followers 📀 California 🔗 https://deltacouncil.ca.gov/

#### Popular repositories

deltafish Public swg-21-foodwebs Public Foodwebs working group from the 2021 DSP-NCEAS synthesis working group ● R ☆ 11 ¥ 1 ● R ☆ 8 ¥ 4

#### swg-21-data Public swg-23-infrastructure This partnership between the Delta Science Program and National Center for 2023 synthesis working group infrastructure project Ecological Analysis and Synthesis will provide high-quality training in data science and statistics and an opportunity for.. 公4 ¥1 ● R ☆ 3 swg-23-sovi Public swg-21-connectivity

Data integration for the 2023 synthesis working group (swg) on existing

connectivity synthesis subgroup

Public

Public

#### ikton synthesis app



#### Salmon release and telemetry receiver locations

Hosted applications (8)



O Click for more information.

Reno Sparks

Release Location: FR Gridley Release Study: Singer et al. 2020. Historic drought influence nics of juvenile fall and spring-run

Year: 2013



## Open science synthesis example #1

© ESA Copernicus Sentinel-2 25 January 2019

#### **Delta Science Program synthesis working group**













**NOAA** FISHERIES





# Drivers of the estuary food supply

Critical knowledge gap identified by Delta Independent Science Board





ARTICLE



Evaluating top-down, bottom-up, and environmental drivers of pelagic food web dynamics along an estuarine gradient

Tanya L. Rogers<sup>1</sup> | Samuel M. Bashevkin<sup>2</sup> | Christina E. Burdi<sup>3</sup> | Denise D. Colombano<sup>4</sup> | Peter N. Dudley<sup>1,5</sup> | Brian Mahardja<sup>6</sup> | Lara Mitchell<sup>7</sup> | Sarah Perry<sup>8</sup> | Parsa Saffarinia<sup>9</sup>

https://doi.org/10.1002/ecy.4274

#### What is top-down control?



## The number of predators controls the number of prey through direct consumption

#### What is bottom-up control?



The availability of food resources controls the number of consumers that can eat and survive

#### What is environmental control?



Prevailing environmental conditions directly control the number of organisms based on physiology or behavior

#### Food web conceptual model



#### **Synthesis in action:** 8 different datasets 1980-2020

#### **TABLE1** Variables and data sources.

| Variables                                                                                   | Data source                                             | Citation                                                           |  |
|---------------------------------------------------------------------------------------------|---------------------------------------------------------|--------------------------------------------------------------------|--|
| Zooplankton (cladocerans, herbivorous<br>copepods, mysids,<br>predatory copepods, rotifers) | Environmental Monitoring Program<br>(EMP Zooplankton)   | Barros (2021)                                                      |  |
| Benthic invertebrates (clams, amphipods)                                                    | Environmental Monitoring Program<br>(EMP Benthic)       | Wells and Interagency Ecological<br>Program (2021)                 |  |
| Fish (estuarine fishes, marine fishes, age 1+ striped bass)                                 | San Francisco Bay Study Midwater Trawl (BSMT)           | https://wildlife.ca.gov/Conservation/<br>Delta/Bay-Study           |  |
| Fish (estuarine fishes)                                                                     | Fall Midwater Trawl Survey (FMWT)                       | https://wildlife.ca.gov/Conservation/<br>Delta/Fall-Midwater-Trawl |  |
|                                                                                             | Summer Townet Survey (STN)                              | https://wildlife.ca.gov/Conservation/<br>Delta/Townet-Survey       |  |
| Fish (Mississippi Silverside, centrarchid species)                                          | Delta Juvenile Fish Monitoring Program (DJFMP)          | Interagency Ecological Program,<br>McKenzie, et al. (2021)         |  |
| Chlorophyll- <i>a</i> , Temperature,<br>Secchi depth, Nutrients                             | Environmental Monitoring Program<br>(EMP Water Quality) | Interagency Ecological Program,<br>Martinez, et al. (2021)         |  |
| Flow                                                                                        | Dayflow, California Department of Water<br>Resources    | https://data.cnra.ca.gov/dataset/dayflow                           |  |



#### **Key finding #1:** All three drivers were important in the models (net effects had similar magnitudes)



#### Key finding #2: Data quality or quantity issues



Not enough data to determine effects of large fishes Low resolution data; need to identify species

#### Key takeaways for research and management

- Synthesis revealed new insights not previously known
- Model support for ecosystembased management solutions



## Open science synthesis example #2

© ESA Copernicus Sentinel-2 25 January 2019



Sac-roe

#### Whole fish

#### Eggs on kelp



UmamiMart.com







- Support commercial, recreational, and subsistence fisheries
- San Francisco Bay = largest spawning aggregation in the state

#### What is population stability?



Adult spawners declining and becoming more variable

#### What is population stability?



Record lows prompted commercial fishery closures

#### What guides fishery closure decisions as of 2019?



Fisheries Research Volume 205, September 2018, Pages 141-148



#### Forecasting herring biomass using environmental and population parameters

William J. Sydeman of Marisol García-Reyes, Amber I. Szoboszlai, Sarah Ann Thompson, Julie A. Thayer





Pacific Herring, Clupea pallasii.



- Forecasting model for adult spawners
- Below threshold? CDFW proactively closes the fishery for the season

## **Forecasting model:** Adult spawners entering the estuary



Adults entering the estuary to spawn in wintertime (biomass)



Adults entering the estuary to spawn in wintertime (biomass) *One year prior* 



### **Forecasting model:** Adult spawners entering the estuary



Ocean temperatures during the summer and fall prior to spawning season



Adults entering the estuary to spawn in wintertime (biomass) *One year prior* 



#### What factors threaten population stability?







#### **Conceptual model:** Juveniles rearing in the estuary



# **Synthesis in action:** 2 different datasets 1981-2015

**TABLE 1** Summary of long-term biological and environmental monitoring datasets used in candidate multivariate autoregressive state-space models.

| Variable              | Survey name       | Gear type                                                   | Spatial extent                  | Period        |
|-----------------------|-------------------|-------------------------------------------------------------|---------------------------------|---------------|
| Age-0 CPUE (mean)     | CDFW SF Bay Study | Midwater trawl                                              | S, C, SP, and SU                | April–June    |
| SSB Index             | CDFW Herring Team | Egg deposition and spawner surveys                          | Estuary (S, C, and SP combined) | October-April |
| Mean salinity (PSU)   | CDFW SF Bay Study | Water quality sonde: mean of<br>surface and bottom profiles | S, C, SP, and SU                | October-June  |
| Mean temperature (°C) | CDFW SF Bay Study | Water quality sonde: mean of<br>surface and bottom profiles | S, C, SP, and SU                | October-June  |

Abbreviations: Variable: °C, degrees Celsius; CPUE, catch-per-unit-effort; PSU, practical salinity units; SSB, spawning stock biomass. Survey name: CDFW, California Department of Fish and Wildlife; SF Bay, San Francisco Bay. Spatial extent: C, Central Bay; S, South Bay; SP, San Pablo Bay; SU, Suisun Bay











- Juvenile herring generally associated with cool, salty waters
- Strongly density dependent = scarcity of resources (competition for food, cover) limited population growth

- Central and San Pablo bays were major contributors to population
- The population was 15% more stable than in individual regions
- Unique regional variation conferred stability



### Management implication #1:

Boost juvenile production in the estuary to prevent fishery closures



Ocean temperatures during the summer and fall prior to spawning season



Adults entering the estuary to spawn in wintertime (biomass) Adults entering the estuary to spawn in wintertime (biomass) *One year prior* 



### Management implication #2: Improve rearing conditions via habitat restoration (eelgrass meadows, tidal marsh)

#### Management implication #3:

Mitigate marine heatwave effects- topic needs more attention





Received: 9 December 2022 Accepted: 13 December 2022

DOI: 10.1002/ecs2.4440

ARTICLE

Coastal and Marine Ecology



Disentangling abiotic and biotic controls of age-0 Pacific herring population stability across the San Francisco Estuary

Nina Pak<sup>1</sup><sup>(D)</sup> | Denise D. Colombano<sup>1</sup><sup>(D)</sup> | Thomas Greiner<sup>2</sup><sup>(D)</sup> | James A. Hobbs<sup>3,4</sup><sup>(D)</sup> | Stephanie M. Carlson<sup>1</sup><sup>(D)</sup> | Albert Ruhi<sup>1</sup><sup>(D)</sup>

https://doi.org/10.1002/ecs2.4440

# Where can I read these papers and access their data products?

Food web study





Email me <a href="mailto:Denise.Colombano@DeltaCouncil.Ca.Gov">DeltaCouncil.Ca.Gov</a>

"Our ability to produce specific analytical information for local problems that can also address questions at larger spatial scales and over longer time frames depends on our willingness to work collaboratively to collect, preserve, and share our data across projects, locations, and research groups."

- Hampton et al. 2013, "Big data and the future of ecology"

## Thank you

Connect with us



Scan the QR code to subscribe to our email announcements



@DeltaCouncil



@deltastewardshipcouncil



Delta Stewardship Council



Deltacouncil.ca.gov



@deltastewardshipcouncil